LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc. DEGREE EXAMINATION – STATISTICS FIFTH SEMESTER – NOVEMBER 2013			
		ST 5504/ST 5500 - ESTIMATION '	THEORY
		Date : 05/11/2013 Dept. No.	Max. : 100 Marks
PART - A			
Answer all the TEN questions:	(10 x 2 = 20)		
1. Define Parameter space.			
2. Define Unbiasedness.			
3. What do you mean by sufficiency?			
4. What is Minimum Variance Unbiased Estimator?			
5. Define Likelihood function.			
6. Define the Method of Moments.			
7. What do you understand by Prior Distribution?			
8. Define Linear Models.			
9. Define BLUE.			
10. Define Efficiency.			
PART - B			
Answer any FIVE questions:	(5 x 8 = 40)		
11. Describe about the concept of "Estimation Theory"			
12. Prove that in sampling from a N(μ , σ^2) population, the s	sample mean is a consistent		
estimator of μ.			
estimator of μ. 13. Find the method of moments estimator for Gamma distributi	on with two parameters.		
estimator of μ. 13. Find the method of moments estimator for Gamma distributi 14. State and prove Cramer's Rao Inequality.	on with two parameters.		
estimator of μ. 13. Find the method of moments estimator for Gamma distributi 14. State and prove Cramer's Rao Inequality. 15. Explain in detail about the least square estimate for linear m	on with two parameters. odels.		
estimator of μ . 13. Find the method of moments estimator for Gamma distributi 14. State and prove Cramer's Rao Inequality. 15. Explain in detail about the least square estimate for linear m 16. If T ₁ and T ₂ be two unbiased estimators of $\gamma(\theta)$ with variance	on with two parameters. odels. ces σ_1^2 , σ_2^2 and correlation of		
estimator of μ. 13. Find the method of moments estimator for Gamma distribution 14. State and prove Cramer's Rao Inequality. 15. Explain in detail about the least square estimate for linear m 16. If T ₁ and T ₂ be two unbiased estimators of γ(θ) with variance ρ, what is the best unbiased linear combination of T ₁ and T	on with two parameters. odels. ces σ_1^2 , σ_2^2 and correlation of Γ_2 and what is the variance of		
estimator of μ. 13. Find the method of moments estimator for Gamma distribution 14. State and prove Cramer's Rao Inequality. 15. Explain in detail about the least square estimate for linear momentation 16. If T ₁ and T ₂ be two unbiased estimators of γ(θ) with variance ρ, what is the best unbiased linear combination of T ₁ and T ₂ such a combination?	on with two parameters. odels. ces σ_1^2 , σ_2^2 and correlation of Γ_2 and what is the variance of		
 estimator of μ. 13. Find the method of moments estimator for Gamma distribution 14. State and prove Cramer's Rao Inequality. 15. Explain in detail about the least square estimate for linear moments and T₂ be two unbiased estimators of γ(θ) with variance ρ, what is the best unbiased linear combination of T₁ and T₂ such a combination? 17. Explain the properties of MLE. 	on with two parameters. odels. ces σ_1^2 , σ_2^2 and correlation of Γ_2 and what is the variance of		
 estimator of μ. 13. Find the method of moments estimator for Gamma distribution 14. State and prove Cramer's Rao Inequality. 15. Explain in detail about the least square estimate for linear moments and T₂ be two unbiased estimators of γ(θ) with variance ρ, what is the best unbiased linear combination of T₁ and T₂ such a combination? 17. Explain the properties of MLE. 18. Obtain the MVB estimator for u in pormal population N/u or setimators. 	on with two parameters. odels. ces σ_1^2 , σ_2^2 and correlation of Γ_2 and what is the variance of		
 estimator of μ. 13. Find the method of moments estimator for Gamma distribution 14. State and prove Cramer's Rao Inequality. 15. Explain in detail about the least square estimate for linear moments and T₁ and T₂ be two unbiased estimators of γ(θ) with variance ρ, what is the best unbiased linear combination of T₁ and T such a combination? 17. Explain the properties of MLE. 18. Obtain the MVB estimator for μ in normal population N(μ, σ 	on with two parameters. odels. ces σ_1^2 , σ_2^2 and correlation of Γ_2 and what is the variance of		
estimator of μ. 13. Find the method of moments estimator for Gamma distribution 14. State and prove Cramer's Rao Inequality. 15. Explain in detail about the least square estimate for linear moments 16. If T ₁ and T ₂ be two unbiased estimators of γ(θ) with variance ρ, what is the best unbiased linear combination of T ₁ and T ₂ such a combination? 17. Explain the properties of MLE. 18. Obtain the MVB estimator for μ in normal population N(μ, σ <u>PART - C</u> Answer any TWO questions:	on with two parameters. odels. ces σ_1^2 , σ_2^2 and correlation of Γ_2 and what is the variance of r^2), where σ^2 is known. $(2 \times 20 = 40)$		
 estimator of μ. 13. Find the method of moments estimator for Gamma distribution 14. State and prove Cramer's Rao Inequality. 15. Explain in detail about the least square estimate for linear moments and T₁ and T₂ be two unbiased estimators of γ(θ) with variance ρ, what is the best unbiased linear combination of T₁ and T₂ such a combination? 17. Explain the properties of MLE. 18. Obtain the MVB estimator for μ in normal population N(μ, σ) PART - C Answer any TWO questions: 19. a) State and prove Rao – Blackwell theorem. 	on with two parameters. odels. ces σ_1^2 , σ_2^2 and correlation of Γ_2 and what is the variance of r^2), where σ^2 is known. $(2 \times 20 = 40)$		

- 20.a) X_1 , X_2 and X_3 is a random sample of size 3 from a population with mean value μ and variance σ^2 . T₁, T₂, T₃ are the estimators used to estimate mean value μ , where
 - $T_1 = X_1 + X_2 X_3 , \ T_2 = 2X_1 + 3X_3 4X_2 \ \text{and} \ T_3 = (\lambda X_1 + X_2 + X_3)/3.$
 - i) Are T_1 and T_2 unbiased estimators?
 - ii) Find the value of λ such that T_3 is unbiased estimator for $\mu.$
 - iii) Find which one is the best estimator?
 - b) Show that If a sufficient estimator exists, it is a function of the Maximum Likelihood Estimator.
- 21.a) In random sampling from normal population N(μ , σ^2), find the maximum likelihood estimators for (i) μ when σ^2 is known.
 - (ii) σ^2 when μ is known.
 - b) State and prove the necessary and sufficient conditions for parametric function to be linearly estimable.
- 22.a) Explain the concept of Method of Least squares.
 - b) Let X_1 , X_2 X_n be a random sample from Bernoulli distribution $b(1,\theta)$. Obtain the Bayes estimator for θ by taking a suitable prior.

\$\$\$\$\$\$\$